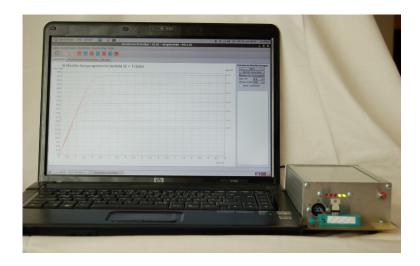
### Kennlinienschreiber V1.xx

Andreas Lindenau DL4JAL

28. Oktober 2010


# Inhaltsverzeichnis

| 1 | Vor         | wort                                      | 3  |  |  |  |  |  |  |
|---|-------------|-------------------------------------------|----|--|--|--|--|--|--|
| 2 | Hardware    |                                           |    |  |  |  |  |  |  |
|   | 2.1         | Mikrokontroller                           | 5  |  |  |  |  |  |  |
|   | 2.2         | D/A Wandler                               | 5  |  |  |  |  |  |  |
|   |             | 2.2.1 D/A Wandler Kollektor/Drainspannung | 5  |  |  |  |  |  |  |
|   |             | 2.2.2 D/A Wandler Basisstrom/Gatespannung | 6  |  |  |  |  |  |  |
|   | 2.3         | Messverstärker                            | 6  |  |  |  |  |  |  |
|   | 2.4         | Stromversorgung                           | 8  |  |  |  |  |  |  |
|   | 2.5         | Gestaltung der Leiterplatte               | 8  |  |  |  |  |  |  |
|   | 2.6         | Bauelemente                               | 9  |  |  |  |  |  |  |
| 3 | Software 10 |                                           |    |  |  |  |  |  |  |
|   | 3.1         | Firmware                                  | 10 |  |  |  |  |  |  |
|   | 3.2         |                                           | 11 |  |  |  |  |  |  |
|   |             | 3.2.1 HW Test                             | 11 |  |  |  |  |  |  |
|   |             | 3.2.2 Einstellung/Messreihen              | 11 |  |  |  |  |  |  |
|   |             |                                           | 13 |  |  |  |  |  |  |
| 4 | Sch         | lusswort                                  | 21 |  |  |  |  |  |  |

# Abbildungsverzeichnis

| Hier ist eine Übersicht aller Baugruppen                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ausgangskennlinie einer grünen LED                            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Ausgangskennlinie einer roten LED                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Schaltbild der 3 Messverstärker                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Ansicht der Baugruppe von oben. Rechts sind die Testfassung   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| und die Kontrollled zu sehen                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Ansicht der Baugruppe von unten.                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Ansicht aller Testmöglichkeiten der HW. Das wird für die Ers- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                               | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                               | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                               | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Zehnerdiode 6,2 Volt                                          | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                               | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                               | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                               | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                               | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                               | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 0 0                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Die Auflösung leidet darunter etwas                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                               | Ausgangskennlinie einer grünen LED  Ausgangskennlinie einer roten LED  Schaltbild der 3 Messverstärker.  Ansicht der Baugruppe von oben. Rechts sind die Testfassung und die Kontrollled zu sehen  Ansicht der Baugruppe von unten.  Ansicht aller Testmöglichkeiten der HW. Das wird für die Erstinbetriebnahme und Kalibrierung benötigt.  Wir sehen die Eingangskennlinie eines IRF820  Vom gleichen IRF820 die Ausgangskennlinie.  Auch Zehnerdioden bis 10V lassen sich darstellen. Das ist eine Zehnerdiode 6,2 Volt.  Eingangskennlinie NPN BD139  Eingangskennlinie PNP BD434  Ausgangskennlinie NPN BD139  Ausgangskennlinie NPN BD139  Ausgangskennlinie PNP BD434  Eingangskennlinie PNP BD434  Eingangskennlinie Vom J310  Ausgangskennlinie des J310. Sichbar ist die grobe Kurve mit den BIT-Sprüngen, da der maximale Strombereich nur bis 20mA geht. |  |

### Vorwort



Ein Kennlinienschreiber für Halbleiter (NPN, PNP, Mosfet N+P, J-Fet N+P, Dioden, Zenerdioden bis 10 Volt) mit USB-Anschluss. Die Kennlinien werden grafisch am PC dargestellt. Für die Transistoren+Fet ist das Eingangs- und Ausgangskennlinienfeld sichtbar. Eine Massenauswertung ist durch den Export der Kenndaten in Excel möglich.

Zur Selektion von Mosfets und Transistoren muss man sich eine Testschaltung zusammenbauen. Noch besser ist natürlich ein Kennlinienschreiber, mit dem die Parameter des Halbleiters grafisch sichtbar werden. Es gibt einige Schaltungsvorschläge die mit einem Oszilloskop als Sichtgerät arbeiten. Der Nachteil dieser Geräte ist die fehlende Vergleichbarkeit der verschiedenen grafischen Darstellungen. Besser ist da ein Gerät mit PC-Steuerung. Es gibt einen Bausatz von ELEKTOR den "Transistor Kennlinienschreiber". Siehe Webadresse [1]. Dieser Bausatz arbeitet mit D/A Wandlern nach dem PWM-Prinzip. Das sagte mir nicht zu. Deshalb habe ich mich entschlossen einen eigenen Kennlinienschreiber zu entwerfen. Ein weiterer Vorteil ist die Entwicklung der Software, die ich entsprechend nach meinen Wünschen gestalten kann. Es war seit Längeren ein Wunsch von mir, die Kennlinien von Halbleitern auf einem PC sichtbar zu machen.

### Hardware

Als erste Überlegung musst ich mir eine Übersicht erstellen, was alles an Baugruppen nötig ist für eine komfortable Funktion. In Abbildung 2.1 auf Seite 5 sehen wir eine Übersicht der Baugruppen und deren Funktion. Die einzelnen Baugruppen gliedern sich in:

- Mikrocontroller mit USB-Anschluss für die Steuerung der HW und die Kommunikation mit dem PC.
- D/A Wandler für die Kollektorspannung/Drainspannung von 0 bis +10Volt oder 0 bis -10Volt. Die Polarität wird mit einem Relais umgeschaltet. Der Ausgang muss mit mindestens 500mA belastbar sein.
- D/A Wandler für den Basisstrom oder Gatespannung. Dabei gliedern sich die Basisstrombereichen in 0 bis 10uA, 0 bis 100uA und 0 bis 1mA. Die Bereiche und die Polarität werden auch hier mit Relais umgeschaltet.
- Messverstärker für die Kollektorspannung/Drainspannung. Der Messbereich von -10Volt bis +10Volt muss am Mikrocontrollereingang (interner A/D Wandler) auf 0 bis 5Volt umgesetzt werden. Der negative Messbereich wird durch die Präzisionsgleichrichtung ebenfalls Positiv.
- Messverstärker für die Basis/Gatespannung. Der Messbereich von -10Volt bis +10Volt muss am Mikrocontrollereingang (interner A/D Wandler) auf 0 bis 5Volt umgesetzt werden. Der negative Messbereich wird durch die Präzisionsgleichrichtung ebenfalls Positiv. Der Eingang muss sehr hochohmig sein.
- Messverstärker für den Emitterstrom oder Sourcestrom . Es wird der Spannungsabfall am 1 Ohm Emitter-widerstand gemessen. Bei 500mA liegen am Widerstand genau 0,5Volt an. Der Messbereich von -0,5Volt bis +0,5Volt muss am Mikrocontrollereingang (interner A/D Wandler) auf 0 bis 5Volt umgesetzt werden. Der negative Messbereich wird durch die Präzisionsgleichrichtung ebenfalls Positiv.
- Die Stromversorgung mit +12Volt und -12Volt. Aus den +12Volt werden noch zusätzlich 5Volt erzeugt für den Mikrocontroller und den USB-IC.

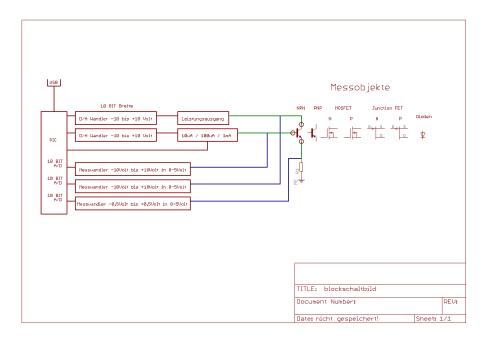



Abbildung 2.1: Hier ist eine Übersicht aller Baugruppen.

#### 2.1 Mikrokontroller

Ich habe als Mikrocontroller den PIC18F4520 verwendet. Dieser PIC hat genügend Pins zu Verfügung. Der RAM und ROM (Flashspeicher) ist auch genügend groß für die anfallenden Aufgaben. Für die USB-Anbindung habe ich einen extra IC eingesetzt, der an Einfachheit kaum zu übertreffen ist, der FT232RL. Dieser IC benötigt nur zwei Kondensatoren von 100n und die Betriebsspannung von 5V und stellt einen vollwertigen USB-RS232 Wandler dar, der direkt an den PIC angeschlossen werden kann. Ich erspare mir auch eine umfangreiche Software für den USB-Teil im PIC, mit dem ich mich noch nicht beschäftigt habe. Das Schaltbild ist in der PDF-Datei [2] zu sehen.

#### 2.2 D/A Wandler

#### 2.2.1 D/A Wandler Kollektor/Drainspannung

Als D/A-Wandler habe ich mich für die Variante mit einem R2R-Netzwerk entschieden. Dafür benötige ich 10 Pins vom PIC pro D/A Wandler. Dieser Wandler ist einfach durch die Software anzusteuern und ist sehr schnell. Die D/A-Wandler mit Pulsweitenmodulation (PWM) brauchen noch einen Tiefpass und genügend Einschwingzeit pro Schritt. Die Umschaltung der Polarität erfolgt durch ein Relais die an den entsprechenden Stellen der OPV-Inverter die Spannung abgreifen. Jetzt fehlt bei der D/A-Wandlung der Kollektor/Drainspannung nur noch der entsprechende Leistungs-OPV der mindestens 500mA liefern kann. Diese Aufgabe übernimmt der L165 mit maximal 3A Ausgangsstrom. Allerdings habe ich jetzt für den L165 eine Ersatzschaltung vorgesehen, da der L165 eine

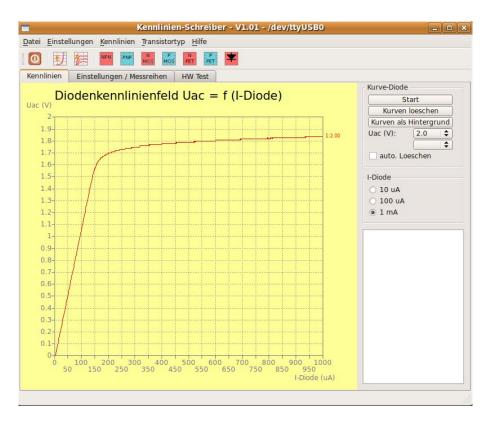



Abbildung 2.2: Ausgangskennlinie einer grünen LED

große Schwingneigung hat.

#### 2.2.2 D/A Wandler Basisstrom/Gatespannung

Der 2. D/A-Wandler ist für das Einstellen des Basisstromes bei den Transistoren verantwortlich. Mit Relais werden Vorwiderstände geschaltet die den maximalen Basisstrom pro Bereich bestimmen. Durch das ändern der Spannung in 1023 Schritten des D/A-Wandler werden die Feinabstufungen des Stromes eingestellt. Ich habe 3 Bereiche zur Einstellung vorgesehen. Der kleinste Bereich ist 10uA, der mittlere Bereich beträgt 100uA und der maximal größte Basisstrom beträgt 1mA. Der 1mA Bereich wird auch benutzt für die Einstellung der Gatespannung 0 bis +/- 10V bei den Fets. Dieser D/A-Wandler dient auch für die Aufnahme der Diodenkennlinien. Siehe Abbildung 2.2 und Abbildung 2.3.

#### 2.3 Messverstärker

Als Messverstärker habe ich auf die alt bewährte Schaltungen von "Precision full-wave rectifier" zurückgegriffen. Die Aufgaben des Messverstärkers ist die Wandlung aller positiven Spannungen und negativen Spannungen in einen Bereich von 0 Volt bis 5 Volt. Nur diesen Spannungsbereich kann der A/D-Eingang des PIC verarbeiten. Siehe Abbildung 2.4. Die 3 Messverstärker greifen die Span-

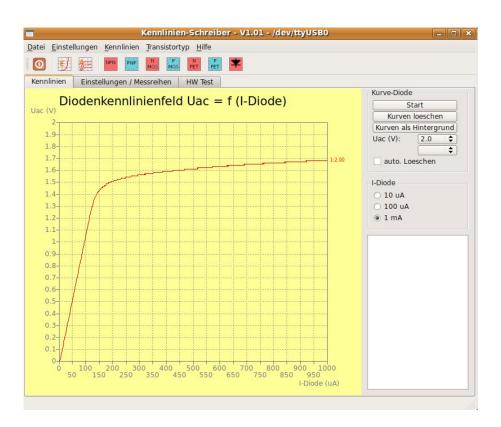



Abbildung 2.3: Ausgangskennlinie einer roten LED

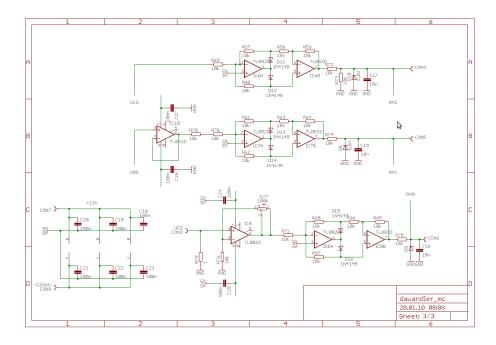



Abbildung 2.4: Schaltbild der 3 Messverstärker.

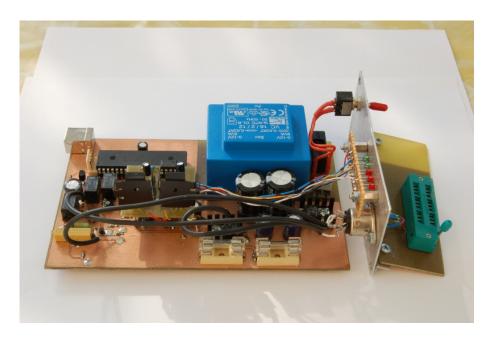



Abbildung 2.5: Ansicht der Baugruppe von oben. Rechts sind die Testfassung und die Kontrollled zu sehen

nungen am Kollektor, an der Basis (ganz hochohmig) und am Emitter ab. Wobei der Emitterspannungsmessverstärker den Spannungsabfall der über einem 1 Ohm Widerstand der vom Emitter zur Masse abfällt misst. Aus dieser Spannung wird sich der Emitterstrom / Sourcestrom vom Messobjekt errechnet.

#### 2.4 Stromversorgung

Für die Stromversorgung habe ich einen Trafo 2 x 15 Volt verwendet. Es folgt die Gleichrichtung und Stabilisierung auf +/- 12 Volt. Die Ladeelkos musste ich auf 4700uF vergrößern und für die Stabilisierung der positiven 12 Volt einen LOW-TROP IC LM 2940 CT12 einsetzen, da Welligkeiten in den Messkurven auftraten. Das waren die Regelgrenzen des Spannungsreglers, da ich Anfangs keinen LOW TROP-Regler eingesetzt hatte.

#### 2.5 Gestaltung der Leiterplatte

Mein Ziel war alle Bauteile auf eine Europakarte unter zu bringen. Das habe ich durch den Einsatz von SMD-Bauteilen erreicht. Allerdings war es auch notwendig die zweite Seite der doppelseitige Leiterplatte zu verwenden. In der Abbildung 2.5 und 2.6 ist der Prototyp als Eurokartengröße zu sehen. An der Rückseite befindet sich die USB-Buchse und an der Vorderseite habe ich eine Diodenbuchse angebracht, wo verschiedene Adapter angeschlossen werden können. Um Schwingneigung zu verhindert habe ich die Masse mit auf die Adapterfassung geführt und je 100n von jedem der 3 Messpins gegen Masse gelötet.

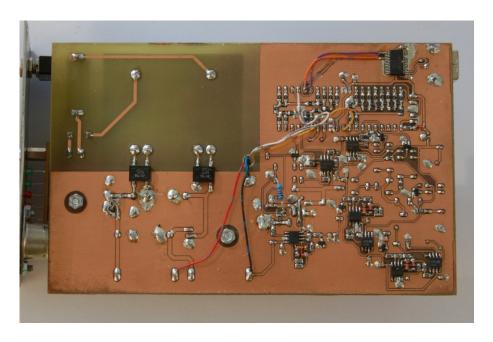



Abbildung 2.6: Ansicht der Baugruppe von unten.

#### 2.6 Bauelemente

Die benötigten Bauelemente habe ich von Reichelt bezogen, außer die D/A-Wandler Widerstände (1% Genauigkeit) und den Leistungsoperationsverstärker L165. Diese Bauteile bezog ich von Farnell. Der USB-Anschluss befindet sich an der Rückseite. An der Vorderseite befindet sich eine Diodenbuchse, wo die verschiedenen Adapter angesteckt werden können. Die Masse (GND) habe ich auch mit einer stärkeren Litze herausgeführt. An die Masse habe ich die 3 Messpins mit je 100n direkt am Sockel abgeblockt. Das wurde notwendig da bei verschiedenen Messobjekten Schwingneigung auftrat. Dieser Kennlinienschreiber ist ein sehr interessantes Bastelobjekt. Sollte es Probleme bei der Beschaffung von Bauteilen geben, so kann ich im begrenzten Maße die Bauteile liefern. Eine Aufstellung der verwendeten Bauelemente habe ich aus Eagle exportiert siehe [3].

### Software

Die Entwicklung der Hardware ist nur der erste Teil des Kennlinienschreibers. Jetzt war noch die PC-Software und die PIC-Firmware zu entwickeln. Das ist allerdings der größere Teil der Arbeit an so einem Projekt. Ich bin Schrittweise vorgegangen. Zuerst habe ich ein kleines Firmwareprogramm geschrieben um die Funktion des D/A-Wandlers zu sehen. Die Ausgabe habe ich so programmiert, dass eine Dreieckschwingung mit dem Oszilloskop sichtbar wird. Damit habe ich die Linearität des Wandlers rein visuell am Oszilloskop kontrolliert. Die Ergebnisse waren für meinen Zweck völlig ausreichend.

#### 3.1 Firmware

Die Firmware habe ich so gestaltet, dass die Befehle vom PC über die USB-Schnittstelle gesendet werden und die Ergebnisse anschließend wieder zurück zum PC fließen. Jeder Befehl beginnt mit einem "@" gefolgt von einem Buchstaben und eventuell noch Parameter.

| Befehl | Befehlslänge | Rückgabe     | Kurzbeschreibung                                  |
|--------|--------------|--------------|---------------------------------------------------|
| @v     | 1 Char       | 1Byte binär  | Versionsabfrage                                   |
| @a0    | 2 Char       | _            | Basisstrombereich einstellen 02                   |
| @b1023 | 5 Char       | -            | Basisstromfeineinstellung im Bereich 01023        |
| @c1023 | 5 Char       | _            | Kollektorspannung einstellen 01023                |
| @p0    | 2 Char       | _            | Polaritätet der D/A-Wandler schalten 03           |
| @r     | 1 Char       | -            | Alles Reset auf 0 setzen                          |
| @m0    | 2 Char       | 2Byte binär  | Messen 02 0=Basis 1=Emitter 2=Kollektor           |
| @k1023 | 5 Char       | max 2050Byte | nach dem k wird der max Emitterstrom angegeben    |
|        |              |              | Messkurve mit steigender Kollektor/Drain-Spannung |
|        |              |              | max 2050Byte Abschluss_Word=0x8000                |
| @t1023 | 5 Char       | 4Byte        | nach dem t wird der max Emitterstrom angegeben;   |
|        |              |              | Test bei welchen Basisstrom oder mit welcher      |
|        |              |              | Gatespannung der max Emitterstrom erreicht wird   |
| @d     | 1 Char       | _            | Endlose D/A Rampe (Sägezähne)                     |
| @e1023 | 5 Char       | max 2050Byte | nach dem e wird der max Emitterstrom angegeben    |
|        |              |              | Messkurve mit steigenden Basisstrom oder          |
|        |              |              | steigender Gatespannung                           |
|        |              |              | max 2050 Byte Abschluss_Word=0x8000               |
| @f1023 | 5 Char       | max 4098Byte | nach dem f wird der max Emitterstrom angegeben;   |
|        |              | , i          | Gatespannung beginnt im negativen Bereich (J-FET) |
|        |              |              | Eingangsmesskurve mit steigender Gatespannung     |
|        |              |              | max 4098Byte Abschluss_Word=0x8000                |
| @g     | 1 Char       | max 2050Byte | Dioden Messkurve steigende Gatespannung;          |
| Ŭ      |              |              | gemessen wird am Gate (Anode der Diode)           |
|        |              |              | max 2050Byte Abschluss_Word=0x8000                |

#### 3.2 PC-Software

Die Software im PC habe ich wieder mit C++ unter Linux entwickelt. Ich benutze gern die QT-Bibliothek von Trolltech. Das ermöglicht eine Plattform übergreifende Kompilierung. Das bedeutet der gleiche Quelltext kann auch für die Kompilierung unter Windows genutzt werden.

#### 3.2.1 HW Test

Als erstes habe ich mir eine Testmöglichkeit der HW-Ansteuerung geschaffen. Siehe Abbildung 3.1. Das erste Einschalten und die Kalibrierung der Baugruppe wird in einem extra Dokument beschrieben [4].

#### 3.2.2 Einstellung/Messreihen

Des weiteren gibt es das Arbeitsblätter "Einstellungen/Messreihen". Hier können Farbeinstellungen vorgenommen werden. Noch interessanter ist allerdings der Punkt "Messreihen". Wir dieser Punkt aktiviert zeichnet das Programm die einzelnen Parameter der Messobjekte in einer CSV-Datei auf. Jede Messung erhöht automatisch die Nummer des Messobjektes. Diese kann in Excel ausgewertet werden. Als Beispiel könnte man das Selektieren von 32 Mosfets IRF820 nennen. Ich habe mir aus 200 Stück 5 Sätze zu 32 Mosfet ausgesucht. Dafür habe ich etwa 4 Stunden gebraucht. Es folgt eine Beispiel CSV-Datei von einer

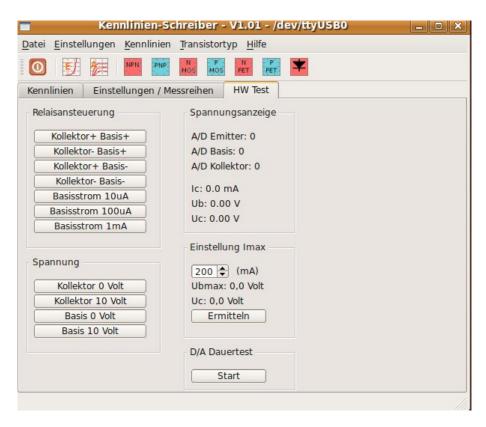



Abbildung 3.1: Ansicht aller Testmöglichkeiten der HW. Das wird für die Erstinbetriebnahme und Kalibrierung benötigt.

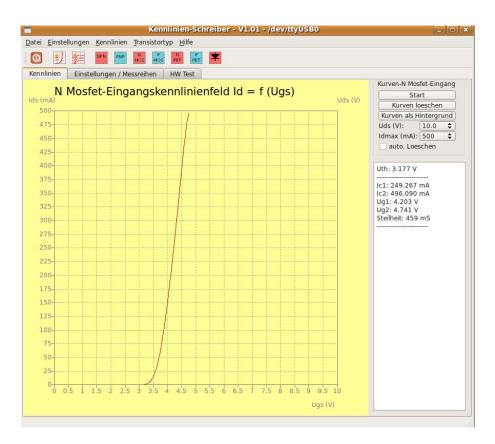



Abbildung 3.2: Wir sehen die Eingangskennlinie eines IRF820

kleinen Messreihe IRF820 Objekt: 3 bis 8

Hier eine Beispieldatei einer Messreihe "default.CSV".

| ObjNr; | Ug;       | Id             |
|--------|-----------|----------------|
| 3;     | 4,500000; | $369,\!501466$ |
| 4;     | 4,500000; | 357,771261     |
| 5;     | 4,500000; | $355,\!816227$ |
| 6;     | 4,500000; | $365,\!102639$ |
| 7;     | 4,500000; | $352,\!394917$ |
| 8;     | 4,500000; | $355,\!327468$ |

#### 3.2.3 Kennlinien

Interessant ist die grafische Darstellung der Eingangskennlinie und Ausgangskennlinie von Transistoren. Siehe Abbildungen 3.2 und 3.3. Das ist so interessant, das ich sofort die verschiedensten Transistoren und Fets zum testen an den Kennlinienschreiber angeschlossen habe.

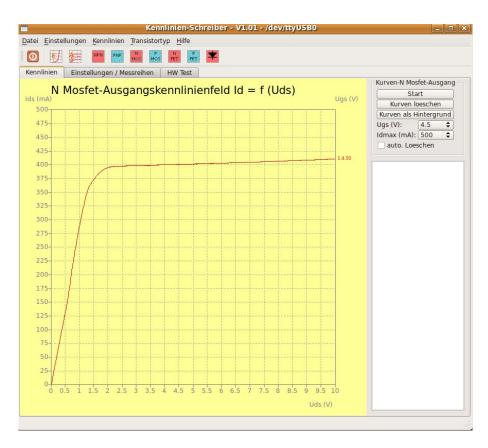



Abbildung 3.3: Vom gleichen IRF820 die Ausgangskennlinie.

#### Eingangskennlinie

Betrachten wir als erstes die Eingangskennlinie. Als Beispiel nehmen wir wieder ein N-Mosfet vom Typ IRF820. Die Funktion lautet Idrain = f (Ugate). Es wird also auf der X-Achse der Verlauf der Gatespannung dargestellt und auf der Y-Achse der Drainstrom. Als Einstellmöglichkeit haben wir eine Auswahlbox für den maximalen Drainstrom. Das ist beim IRF820 kein Problem (Idmax = 4A). In der 2. Auswahlbox können wir die Spannung am Drain einstellen. Diese bleibt konstant bei der Aufnahme der Messkurve. Starten wir jetzt die Aufnahme der Kurve passiert folgendes. Die Auswahlbox für die Drainspannung wird ausgelesen und das Kommando zum PIC gesendet. Die Spannung stellt sich ein. Anschließend wird die Gatespannung auf 0Volt eingestellt und in 1023 Schritten bis auf 10Volt erhöht. Nach jedem Schritt wird der Drainstrom gemessen und wenn das Maximum der Auswahlbox nicht überschritten ist das Messergebnis zum PC gesendet. Ist der maximale Drainstrom überschritten wird als Abschluss der HEX-Wert 0x8000 gesendet und die Messkurve wird dargestellt.

Bei den Transistoren ist die Aufnahme der Kurve ähnlich. Zusätzlich kann ich aber noch den Bereich des Basisstromes vorwählen.

Bei den J-Fets beginnt der Verlauf der Gatespannung nicht bei 0 sondern bei der maximalen negativen Spannung. Nehmen wir als Beispiel ein N-JFet so würde der Gatespannungsbereich von -10Volt bis 0Volt in 1023 Schritten durchfahren und weiter von 0 bis +10Volt auch in 1023 Schritten bis der maximale Drainstrom erreicht ist. Aus diesen Kurven kann man ganz einfach bei Fets die Steilheit errechnen. Wir brauchen nur einen Delta des Spannungsanstieges der Gatespannung und den Anstieg des Drainstromes in diesem Bereich Deltabereich der Gatespannung.

Noch einfacher gestaltet sich sich die Errechnung der Verstärkung bei Transistoren. Es ist an jeder Stelle der Kurve der Basisstrom bekannt und der dazu gehörende Kollektorstrom. Die ermittelten und errechneten Werte werden in ein Infofenster rechts neben der grafischen Kurvendarstellung hineingeschrieben.

#### Ausgangskennlinie

Nach der Eingangskennlinie betrachten wir die Ausgangskennlinie. Als Beispiel nehmen wir wieder ein N-Mosfet vom Typ IRF820. Die Funktion lautet bei dieser Kurvendarstellung Idrain = f (Udrain). Wobei Ugate konstant bleibt. Also der Drainstrom wird in Abhängigkeit der Drainspannung dargestellt. Dazu wird die Drainspannung von 0 Volt bis 10 Volt in 1023 Schritten durchfahren. Bei jedem Schritt wird der Drainstrom gemessen und an den PC übermittelt. Vorherige Einstellungen sind einmal der maximal zulässige Drainstrom. Das ist beim IRF820 kein Problem (Drainstrom max. 4A). Die andere Einstellung ist die Gatespannung. Die passende Spannung lesen wir aus der Eingangskennlinie ab. Ich habe in diesem Fall 4,5 Volt Gatespannung eingestellt. Die Gatespannung bleibt ja bei dieser Kennlinie konstant. Die Kurve müsste bei dieser Gatespannung bei etwa 400mA liegen. Siehe Abbildung 3.3. Bei dieser Kurvendarstellung ist es nicht möglich die Steilheit im Infofenster darzustellen. Dazu brauchen wir eine 2. Kurve mit einer anderen Gatespannung. Das ist noch nicht in der Software implementiert. Die SW werden ich ständig erweitern und und solche Überlegungen mit einprogrammieren.

Grundsätzlich ist es möglich beliebig viele Kurven übereinander darzustel-

len. Es ist auch möglich eine Kurve in den Hintergrund zu bringen. Dazu dient die die Taste "Kurve als Hintergrund". Ein automatisches Löschen der vorherigen Kurve beim "Start" wird durch die Aktivierung "auto. Loeschen" erreicht. Wichtig ist bevor eine Messkurve begonnen wird, die Begrenzung des maximalen Drain- oder Kollektorstromes. Diese Einstellung muss als erstes vorgenommen werden. Nicht jeder Halbleiter verträgt einen Kollektorstrom oder Drainstrom von 500mA. Entsprechend dieser Einstellung ändert sich die Teilung der Y-Achse.

Die dritte grafische Darstellungsmöglichkeit ist die Dioden-kurve. Dazu wird die Kathode an Basis/Gate und die Anode an Emitter/Source angeschlossen. Die X-Achse stellt die Spannung von 0-10Volt mit dem Basisvorwiderstand in Reihe zur Diode dar und auf der Y-Achse sehen wir die Spannung zwischen Anode und Kathode. Die Funktion lautet "Uac = f(Ubasis mit Rvor)". Damit können wir auch die Parameter von Zenerdioden bis max 10 Volt grafisch darstellen und testen. Beispiele sehen wir in den Abbildungen 2.2, 2.3 und 3.4.

Zum Abschluss sehen wir noch Parameterkurven von verschiedenen Halbleitern. In den Abbildungen 3.5, 3.6, 3.7 und 3.8 sehen wir Eingangskennlinien und Ausgangskennlinien von Transistoren. Die Eingangskennlinien haben bei Transistoren einen geraden Verlauf, da Kollektorstrom linear vom Basisstrom abhängt. In der Abbildung 3.9 ist die Eingangskennlinie des J310 zu sehen. Der Drainstrom beginnt schon bei negativer Gatespannung zu fließen. Entsprechend sind die Einstellungen der Gatespannung bei der Ausgangskennlinie vorzunehmen. Sie Abbildung 3.10. Ich habe die Kurven von verschiedenfarbigen LEDs aufgenommen und zum Abschluss noch eine Zenerdiode mit 6,2Volt. Bei der Kurven sehen wir eine Anfangs eine schräge Linie. Das ist der Spannungsanstieg am Basis-D/A-Wandler. Sind die 6,2Volt erreicht wird die Linie waagerecht. Die Kurvendarstellung ist etwas eigenwillig aber für unsere Zwecke völlig ausreichend.

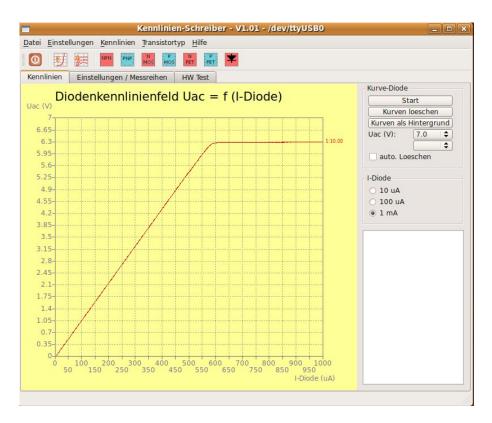



Abbildung 3.4: Auch Zehnerdioden bis 10V lassen sich darstellen. Das ist eine Zehnerdiode 6,2 Volt.

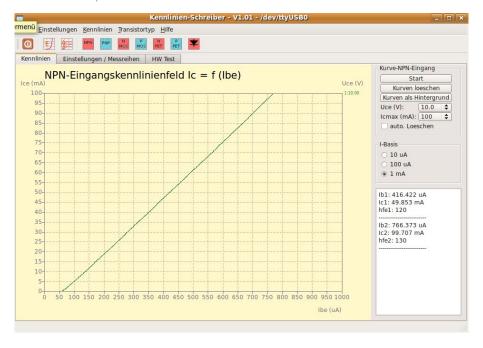



Abbildung 3.5: Eingangskennlinie NPN BD139

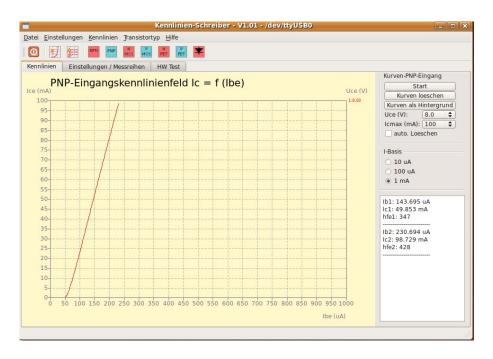



Abbildung 3.6: Eingangskennlinie PNP BD434

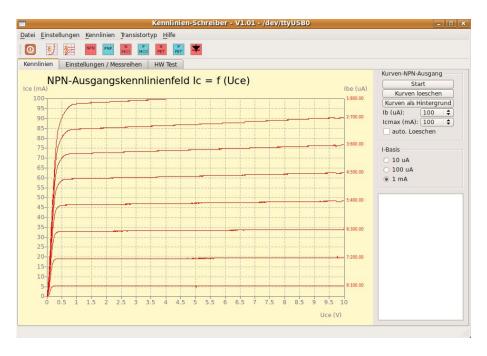



Abbildung 3.7: Ausgangskennlinie NPN BD139

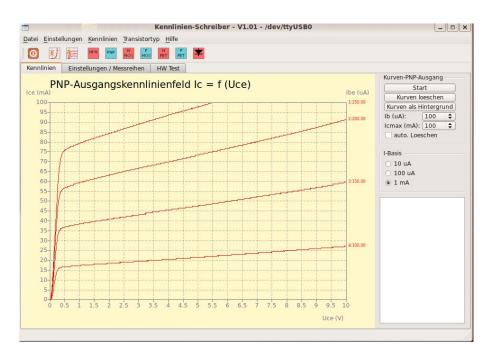



Abbildung 3.8: Ausgangskennlinie PNP BD434

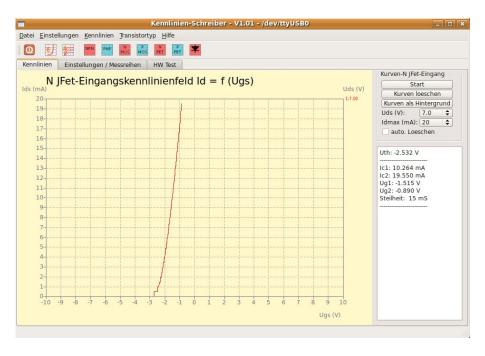



Abbildung 3.9: Eingangskennlinie vom J310

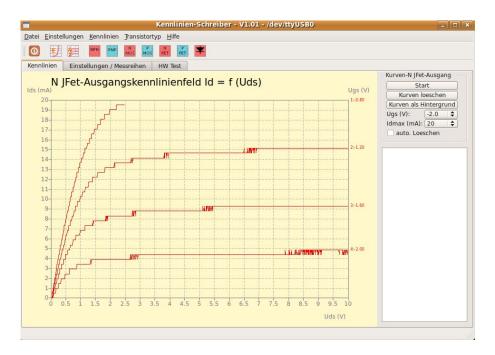



Abbildung 3.10: Ausgangskennlinie des J310. Sichbar ist die grobe Kurve mit den BIT-Sprüngen, da der maximale Strombereich nur bis 20 mA geht. Die Auflösung leidet darunter etwas.

# Schlusswort

Dieses Projekt ist ein reines privates Bastelprojekt. Alle Rechte liegen bei Andreas Lindenau DL4JAL.

Ich wünsche viel Spaß beim Nachbauen.

# Literaturverzeichnis

- $[1] \qquad \text{http://www.elektor.de/jahrgang/2009/februar/transistor-kennlinienschreiber.} \\ 811211.lynkx$
- $[2] \hspace{1cm} http://www.dl4jal.eu/kls/kls\_mit\_L165\_Nachbildung\_schaltung.pdf$
- $[3] \hspace{1.5cm} http://www.dl4jal.eu/kls/kls\_mit\_L165\_Nachbildung\_Bauteileliste.pdf$
- [4] http://www.dl4jal.eu/kls/inbetriebnahme.pdf